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Summary

The Murray—Darling Basin has recently experienced the worst drought conditions in over 100 years of records (Timbal
2009). Basin-wide climatic shifts and water management decisions resulted in a period of extreme low river flows
(hydrological drought) to the lower reaches of the River Murray and Lower Lakes in South Australia from 2007-09.
Average lake levels (-0.38 m AHD Lake Alexandrina, —0.19 m AHD Lake Albert) in the drought period (2007—09) were
approximately 1 m lower than the long-term average (0.7 m AHD) and represented a 35% and 55% reduction in water
volume respectively. The lowest water levels (—1.05 m AHD Alexandrina, —0.55 m AHD Albert) during the drought were
reached in April 2009 and represented a 64% and 73% reduction in lake volume respectively.

Water quality was investigated at 15 ambient sites which were regularly (fortnightly—monthly) monitored from August
2008-July 2010. These sites also incorporate three long-term monitoring sites; two in Lake Alexandrina (Milang and
Goolwa), and one in Lake Albert (Meningie). Event-based water quality sampling was also undertaken in selected
localised regions that have experienced acidification or are at risk of acidification. The selection of event-based sites was
based upon acid sulfate soil risk assessments. The event-based information was required to determine the need for
management actions, such as limestone dosing, which has the capacity to reduce the acidity hazard and mitigate further
metal release.

The water quality parameters considered in this report were general water quality parameters (salinity, temperature, pH,
turbidity), nutrients (total nitrogen, TN; ammonia, NH4; oxidised nitrogen, NOx; total phosphorus, TP; soluble filtered
reactive phosphorus, FRP), a measure of total green algae (chlorophyll a), algal speciation (at selected sites), dissolved
oxygen, colour, dissolved organic carbon, and total and soluble (<0.4 um) metals (primarily iron and aluminium, but other
metals measured during acidification events). Hydrological parameters (river flow, lake level and volume) were also
assessed as potential drivers of water quality change.

A complete lack of lake flushing occurred from 2007-09 as no discharge occurred over the barrages to the Coorong and
Murray Mouth. This resulted in a concentration of dissolved and particulate material in the lakes driven by evaporation
and the associated large reductions in lake volume. Salinity increases were very large, particularly in the southern
regions of the lake furthest from the river inflow and closest to the barrages, which leaked seawater into the lakes (due to
sea levels being higher than the lakes for much of drought period). As a consequence of these salinity increases, major
losses of freshwater species occurred and the water became unsuitable for irrigation. The lack of lake flushing also
resulted in the observation of very high concentration of nutrients and algae, and increasing dominance of cyanobacteria.
The lake was classed as hyper-eutrophic during the low flow period. Turbidity also increased during the drought period
(particularly in Lake Albert) due to concentration of particulate material and increased wind resuspension.

Several surface water acidification events also occurred during the 2008-10 drought period. These areas were on the
shallow lake margins, often in embayments which have limited connection with the main lake water body. The total area
that acidified was estimated to be 2,173 ha, which represented about 3% of the Lower Lakes surface water area.
Different severities and durations (ranging from weeks to months) of acidification were observed. Neutralisation of
acidification was accomplished naturally in several areas by dilution and alkalinity input following a rapid rise in lake
levels following Murray—Darling Basin floodwater inflows during 2010. Treatment of acidification via aerial limestone
addition occurred in two areas, Currency Creek and Boggy Lake, and was highly successful in achieving neutralisation
over large areas. Additional limestone barriers were placed in the acidified regions of Upper Finniss River.

Further assessment of water quality during future low flow events is recommended in our study area, as well as the time
period for recovery from the recent event. Along with many other arid and semi-arid river systems, median river flows in
the southern Murray—Darling Basin are predicted to decline further (13% decrease by 2030) over the next 20 years due to
climate change. Hence extreme low flow periods will likely become more frequent and intense in these vulnerable
systems. Careful water resource planning and management will be required to prevent water quality deteriorating to the
point where socio-economic and environmental values are threatened. The findings in this report strongly support that a
substantial increase in environmental flows are required to maintain system flushing, water levels and quality in the lower
reaches of the system during low flow conditions.






Water quality in the Lower Lakes during a hydrological drought

1 Introduction

The Murray—Darling Basin has recently experienced the worst drought conditions in over 100 years of records (Timbal
2009). Basin-wide climatic shifts and water management decision resulted in a long period (2007-09) of extreme low
flows (hydrological drought), in the lower reaches of the river system in South Australia. The Lower Lakes (Alexandrina
and Albert) are located at the end of the freshwater portion of the Murray—Darling Basin. These lakes support several
important socio-economic and aquatic ecosystem values, termed environmental values. This region contains the
townships of Goolwa, Milang and Meningie and several smaller communities. It is also contains several large irrigated
agricultural areas, including major vineyards (Langhorne and Currency Creeks) and dairy farming. The lakes are also an
important recreational area for activities such as sightseeing, swimming, boating, fishing, and bird watching. The Lower
Lakes and Coorong area is recognised as one of Australia’s most significant ecological assets and is designated a
wetland of international importance under the Ramsar Convention (Phillips et al 2005). This area is also of high cultural
importance, particularly for the indigenous Ngarrindjeri people (Ngarrindjeri 2006). The protection of the environmental
values of the Lower Lakes depends on maintaining suitable water quality.

The primary aim of this report is to assess the water quality changes in the Lower Lakes that have occurred during the
severe hydrological drought of 2007—09. Longer-term water quality changes are also assessed.

Currency Creek region during the 2007-09 drought period showing exposed and acidified sediment areas
(Source: DENR 2009).
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2 Methods

Description of the Murray—Darling Basin and Lower Lakes study area

The study area comprised the two lakes, Albert and Alexandrina, collectively known as the Lower Lakes (Figure 1).
These lakes comprise the most downstream freshwater region of the Murray—Darling Basin which is Australia’s largest
river system with a total catchment area of 1,061,469 km?, equivalent to 14% of Australia’s total area. Most of the Basin is
situated in extensive arid to semi-arid plains with a low undulating topography, mostly below 200 metres above sea level.
The catchment is characterised by low rainfall and runoff and susceptibility to drought (Murphy and Timbal 2008). Since
the early 20th century, Basin-wide water resource development for agriculture and flow regulation has reduced total river
flow at the Murray River Mouth by 61% and the river now ceases to flow through the mouth 40% of the time compared to
1% of the time in the absence of water resource development (CSIRO 2008). Surface water availability is predicted to
decline further in the southern part of the Basin over the next 20 years due to climate change—median of 13% decrease
by 2030 (CSIRO 2008).

The three major river systems in the Murray—Darling Basin are the Darling (2,740 km), Murray (2,530 km) and
Murrumbidgee (1,690 km) which are Australia's three longest rivers. A series of locks, weirs and storages regulate water
flows throughout the Murray—Darling Basin. There are no major tributaries to the Murray River downstream of Lock 1,
which is the last river regulating structure along its reach. Below Lock 1, the Lower Murray River flows for approximately
250 km before discharging into the Lower Lakes which are the end of the freshwater region of the Murray—Darling Basin.

The Lower Lakes are large (821.7 km? total surface area) and very shallow. Lake Alexandrina (650.2 km?), the deeper of
the two lakes, has a maximum depth of approximately 4.1 m and a mean depth of 2.9 m at full capacity (Geddes 1984).
Lake Albert (171.5 km?) is much shallower with a maximum depth of approximately 2.3 m and a mean depth of 1.4 m at
full capacity. Wind action over the large fetch on these lakes typically results in a highly turbid system with little
stratification (Geddes 1984, Aldridge et al 2009). The Lower Lakes are eutrophic, with high retention of fluvial nitrogen
and phosphorus, low concentrations of soluble nutrients, high productivity and periodic toxic algal blooms (Geddes 1984,
Cook et al 2010). Under sufficient flows, water exits from the Lower Lakes over a series of barrages separating the lakes
from the Coorong (a coastal lagoon), Murray River Mouth and Southern Ocean (see Figure 1). The barrages are gated
structures completed in the late 1940s to prevent seawater intrusion into the lakes as water resource development in the
Murray—Darling Basin began to exacerbate this effect. The sediment diatom record demonstrates that these lakes were
predominantly freshwater systems over the last several thousand years (Fluin et al 2007) and the barrages have
maintained relatively low salinity conditions during the 20th century.

Several government management actions have taken place in the study area from 2008-09. These included:

e the construction of a temporary bund in the Narrung Narrows in March 2008 in order to pump water (April 2008—June
2009 170 GL, January 2010-June 2010 90 GL) from Lake Alexandrina to maintain water levels above —0.5 m AHD in
Lake Albert

e construction of temporary flow regulators in July 2009 at Clayton and Currency Creek and pumping (27.5 GL
September—November 2009) from Lake Alexandrina which coupled with retention of Currency Creek and Finniss
River tributary flows behind the regulators aimed to raise water levels in the Goolwa channel above +0.7 m AHD

e revegetation of large areas of exposed lake bed.

The major objective of these projects has been to prevent the further exposure of, or to remediate, acid sulfate soils as
water levels declined and exposed large areas on the lake margins (Fitzpatrick et al 2008, 2010). The exposure to
oxygen and subsequent oxidation of pyrite (FeS,) in acid sulfate soils generates acidity (hydrogen ions, dissolved iron
and aluminium) in the upper soil profile. If severe acid conditions (pH<4) develop in the soil, precipitation of secondary
acidic minerals (eg Jarosite) often occurs and weathering of alumino-silicate (eg clay) minerals is enhanced. High
concentrations of soluble aluminium are a common outcome of this weathering process. The rewetting of acid sulfate
soils can mobilise acidity and metals into the water column (Simpson et al 2010).

Following return of substantial River Murray inflows to the Lower Lakes, the Narrung bund was partially breached
19 September 2010 and the two lakes equalised at +0.73 m AHD on 12 October 2010. The Goolwa Channel temporary
flow regulator was partially breached on 25 September 2010.
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Samples sites and water quality parameters

Water quality was investigated at 15 ambient sites which were regularly (fortnightly—monthly) monitored from August
2008-July 2010 (Fig. 1). These sites also incorporate three long-term monitoring sites; two in Lake Alexandrina (Milang
and Goolwa), and one in Lake Albert Meningie which in some cases have records back to the 1970s (Figure 1). Event-
based water quality sampling was also undertaken in selected localised regions that have experienced acidification or are
at risk of acidification. The selection of sites was based upon acid sulfate soil risk assessment, in accordance with
available data on the distribution of sulfidic and sulfuric materials as well as research and modelling into potential acidity
fluxes. High risk locations were initially screened to identify the presence and extent of any acidity, and the frequency of
further monitoring was determined from these results. The information is used to determine the need for management
actions, such as limestone dosing, which has the capacity to reduce the acidity hazard and mitigate further metal release.
All water quality data was extracted from the EPA water quality database.

The water quality parameters considered in this report were general water quality parameters (salinity, temperature, pH,
turbidity), nutrients (total nitrogen, TN; ammonia, NH4; oxidised nitrogen, NOXx; total phosphorus, TP; soluble filtered
reactive phosphorus, FRP), a measure of total green algae (chlorophyll a), algal speciation (at selected sites), dissolved
oxygen, colour, dissolved organic carbon, and total and soluble (<0.4 um) metals (primarily iron and aluminium, but other
metals measured during acidification events). Hydrological information (river flow, water level) data downstream of Lock 1
was obtained from the Department for Water (South Australia). Annual Murray—Darling Basin rainfall was obtained from
the Australian Bureau of Meteorology website.

A brief description of some of the key water quality parameters

pH is an indicator of acidity or alkalinity. Neutral water has a pH of 7, acidic solutions have lower values and alkaline
solutions have higher values.

Alkalinity is a measure of the buffering capacity of water, or the capacity of the water to neutralise acids and resist pH
change. Alkalinity within water bodies is consumed as acid released from acid sulfate soils. Adding limestone
contributes alkalinity to waters, helping to neutralise any acid released from the sediments.

Salinity is a measure of the amount of dissolved salts in the water. Saline water conducts electricity more readily than
freshwater, so electrical conductivity (EC, uS/cm) is routinely used to measure salinity. As salinity increases, it may
become toxic to native freshwater organisms.

Major ions such as calcium, magnesium, sodium, chloride and sulfate are the components that comprise the salinity of
the water. The sulfate:chlorideratiois used to give an indication of any sulfate inputs to the water body from acid sulfate
soils. Chloride concentration is largely determined by evaporation and dilution. An increase in the ratio of
sulfate:chloride indicates likely external sulfate inputs from acid sulfate soils.

Turbidity is a measure of the cloudiness or haziness in water caused by suspended solids (eg sediment, algae).
Turbidity is expressed in nephelometric turbidity units (NTU) and is measured using a relationship of light reflected from
a given sample. Turbidity is very variable in the Lower Lakes and influenced primarily by wind events.

Nutrients are total nutrients (total nitrogen, TN and phosphorus, TP) and dissolved nutrients (ammonia, NH,; oxidised
nitrogen (nitrate and nitrite), NO,; filtered reactive phosphorus, FRP). Nitrogen can be present in different forms (eg
organic nitrogen in plant material, ammonia, nitrate and nitrite). Phosphorus can also be present in different forms (eg
organic phosphorus, phosphate/FRP). TN and TP are the total amount of nitrogen and phosphorus present respectively
in the water body and high concentrations indicate excessive growth (or eutrophication) of aquatic plants such as
phytoplankton, cyanobacteria, macrophytes and filamentous algae. The availability of soluble nutrients, in particular
FRP, determine rates of algal growth.

Chlorophyll a is the main photosynthetic pigment in green algae. The concentration of chlorophyll gives an indication of
the volume of aquatic plants present in the water column. Levels in excess of 15 pg/L are considered very high (hyper-
eutrophic) and nuisance algae and plant growth can occur (ANZECC 2000).

Metals such as iron and aluminium are measured primarily to determine interactions between sediments and the lake
water body. During concentration events (ie evaporation and low inputs) volumes of metals are expected to increase.
Similarly during large wind events total metal levels might also increase as they form part of the suspended solids
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composition. Alternatively during floodwater inflows the concentration of metals may be diluted. Additional to this, if
exposed acid sulfate sediments acidify and the soil pH is reduced, metals that have been previously unavailable and
bound up within sediment are released. Any subsequent increase in metal concentration in the water body can be used
as an indicator of acid sulfate soil impacts.

Dissolved oxygen is a measure of the quantity of oxygen gas dissolved in the water. Aquatic animals, plants and many
bacteria need oxygen for respiration, as well as for some biogeochemical reactions. A low level of dissolved oxygen is
harmful to aquatic life and can result in major ecosystem impacts such as fish kills. Oxygen is replenished primarily from
the atmosphere and this process is enhanced by wind-mixing.

Sampling and analytical methods

Grab sampling at the Lower Lakes sites (Figure 1) were collected at the shoreline or from vessels (boat, hovercraft). New
sample bottles, washed and rinsed with deionised water, were used for all analyses. Samples were collected by rinsing
the bottle with the sample, and collecting the sample according to standard methods (APHA 2005 and previous editions).
Following collection, the water samples were transported to the Australian Water Quality Centre (AWQC) laboratory in
Adelaide in ice-filled cooler boxes and then stored at 4°C. AWQC is a National Association of Testing Authorities (NATA)
accredited laboratory. The laboratory has been accredited for chemical testing since 1974 which covers almost the entire
dataset used in this study. NATA accreditation requires maintenance and documentation of strict quality control
procedures.

Temperature, pH, ORP, EC and dissolved oxygen were measured at the time of sample collection using calibrated
instruments. Total alkalinity in the field and laboratory was measured by titration to a pH 4.5 end-point. The field titrations
were performed using a commercially available test kit (HACH model AL-DT). Acidity in the laboratory was measured by
titration to pH 8.3 at 25°C following hot peroxide digestion. Acidity in the field was measured using a commercially
available test kit (HACH model AC-DT). Salinity was measured according to manufacturers’ instructions using calibrated
conductivity meters. Turbidity was measured by a nephelometer. Water samples for dissolved nutrients (NH4, NOx, FRP)
were filtered through 0.45 pm membrane filters immediately following collection. All nutrient samples were kept
refrigerated at 4°C and analysed within seven days as per standard colorimetric methods (APHA 2005 and earlier
additions). Water alkalinity was measured by titration with a pH 4.5 end-point for total alkalinity (APHA 2005 and earlier
editions). Dissolved oxygen was measured by both a TPS90 oxygen probe and a YSI field probe. Dissolved organic
carbon samples were analysed through very high temperature combustion using a Shimadzu VCHS. Colour was
analysed through spectrophometric methods (at 456 nm). Total and dissolved (<0.4 um) metal concentrations were
measured by ICP-Mass Spectrometry.

Data analysis

Non-parametric summary statistics were calculated for the water quality data. The median value was used to summarise
the centre of the dataset and the interquartile range (IQR, 75th percentile minus the 25th percentile) used to represent
the data spread.

In order to make statistical comparisons of the current drought water quality with the long-term dataset, it was necessary
to define hydrological drought and reference periods. Monthly flow duration curves were produced from the daily river
flow record at Lock 1 for the period 1970-2010 (Figure 2, data provided by the Department for Water, South Australia).
The flow duration curve plots the cumulative frequency of river flow as a function of the percentage of time that the flow is
exceeded. The 90th percentile flow (Qqo) Was used as the monthly flow threshold for drought conditions, as
recommended for non-ephemeral river systems by Hisdal et al (2004). This approach revealed a threshold monthly flow
of 54.5 GL, with a 33-month hydrological drought period defined from March 2007—-November 2009.

The March 2003—November 2005 period was defined as the non-drought reference period. This reference period is the
same length as the drought period but contains flows within the interquartile range and is thus representative of long-term
average flow conditions (Figure 2). However, this reference period does not contain any of the higher winter—spring flow
peaks (above Q,s) that were a feature prior to 2000 and this illustrates the recent decadal scale climatic and hydrological
shifts that have occurred in the Murray—Darling Basin (Ummenhofer et al 2010). The relatively short time period between
the reference and drought periods minimises the likelihood that any landuse or water regulation changes in the
catchment have impacted on water quality patterns.
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The significance of differences in water quality between the drought and reference periods was determined using the
non-parametric Mann-Whitney U test (Helsel and Hirsch 2002). These tests were performed in the Microsoft Excel add-in
program XLSTAT™ with statistical significance ascribed to p values less than 0.05. As this test is based on ranks, any of
the dissolved nutrient data below the detection limit was able to be treated as the value of the detection limit in the
statistical test. Some of the sites had insufficient datasets to enable statistical comparisons for all parameters.

Water quality sampling in the Upper Currency Creek region in 2009
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Figure 1 Sampling sites (green dots) within the Lower Lakes study area and the Murray—Darling basin. Also shown

are the townships (black dots), flow and water level monitoring station at Lock 1, the barrages and Murray
Mouth. Additional telemetry data stations can be found at the website
<www.waterconnect.sa.gov.au/RMWD>
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3 Results

Hydrology

River Murray flow at Lock 1 was extremely low during 2007-09 (Figure 2), approximately one-tenth of the long-term
average flows (MDBA 2010). The water levels in the Lower Lakes fell substantially from 2007 to late 2009 as a
consequence of the low river inflows (Figure 2). Average lake levels (—0.38 m AHD Alexandrina, —0.19 m AHD Albert) in
the drought period (2007-09) were approximately 1 m lower than the long-term average (0.7 m AHD) and represented a
35% and 55% reduction in water volume respectively. The lowest water levels (-1.05 m AHD Alexandrina, —0.55 m AHD
Albert) during the drought were reached in April 2009 and represented a 64% and 73% reduction in lake volume
respectively.

Figure 2 also shows the water level in Lake Alexandrina, Lake Albert and the Goolwa Channel during the drought period
illustrating hydrological disconnection (except for pumping) from March 2008 for Lake Albert (disconnected from
Alexandrina) and from July 2009 for the Goolwa Channel (disconnected from Lake Alexandrina at Clayton). Both these
regions were at risk of almost completely drying out prior to these projects being implemented.

Due to floods in the Darling River system, an increase in river flows occurred in December 2009 (Figure 2). This was
followed by floods in the Murray River system to mid-2010. The combination of these two events resulted in a rapid
recovery of water levels in the Lower Lakes (Figure 2).

Lake Alexandrina

The water quality in Lake Alexandrina between 2008 and 2010 is summarised in Tables 1-3 and Figures 3-10. Salinity
levels followed a general increasing trend during the drought period, with slight decreases during winter months, until a
substantial dilution and flushing from river floodwater inflows occurred from late 2009 (Figure 3). During the drought a
distinct spatial variation in salinity was observed (Figure 3) with very high levels in the southern regions of the lake (Pt
McLeay site, and Goolwa and Tributaries) grading to lower levels at (Wellington, Opening) and near the River Murray
entrance (Poltalloch and Top sites). Following the increased river inflows in 2010 this spatial variation was accentuated.

Alkalinity remained quite stable at high levels with relatively little spatial variation until late 2009. From this time the
inflowing flood waters had low alkalinity levels and resulted in a dilution of alkalinity and greater spatial variability across
Lake Alexandrina. pH exhibited some minor temporal and spatial variability with an increase occurring in late 2009
corresponding to the arrival of floodwaters and refill of the lake. The pH subsequently decreased at several sites as the
lower pH in the inflowing flood water mixed with the lake water.

Temperature was similar at all sites with a distinct seasonal variation (Figure 3). Turbidity was at high levels and showed
a great deal of variability, particularly at the Milang site.

The nutrients and chlorophyll a concentrations in Lake Alexandrina are shown in Table 2 and Figures 4-5. Total nitrogen,
total phosphorus and chlorophyll a followed a general increasing trend over the drought period, until a substantial dilution
from River Murray floodwater inflows occurred from late 2009. During 2009 there was quite a large spatial variation
apparent in total nutrient levels, with lower levels at or near the river inflow sites. Soluble nutrients (ammonia, oxidised
nitrogen and filtered reactive phosphorus) remained at very low levels throughout the monitoring period apart from higher
levels in the river inflows. Chlorophyll a showed minimal spatial variation and no clear seasonal trends (Figure 5). The
phytoplankton population was dominated by blue-green algae (cyanobacteria), predominantly Planktolyngbya species
(Figure 6). Green algal species showed some increases in late 2009, coinciding with increased floodwater inflows to the
Lower Lakes and diatoms show seasonal trends (highest in winter).

Dissolved oxygen was maintained at near-saturation (7—8 mg/L) through the drought in Lake Alexandrina, with slightly
lower levels at the Wellington site representing the River Murray inflow (Figure 7). Colour shows little seasonal variation
but a large increase is seen at the sites closest to the river in late 2009 to 2010, representing the inflow of floodwaters
from the Murray—Darling Basin (Figure 7). Dissolved organic carbon was only measured in 2009 but shows a seasonal
variation peaking in the summer months.
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Table 1 Lake Alexandrina — summary statistics for general water quality parameters
Parameter Statistic Middle Milang Points Poltalloch Top  Wellington Opening Islands
Salinity (us/cm) median 5,410 5,865 6,900 4,530 5,385 360 943 7,320
25th percentile 4,360 5,098 5,830 3,643 4,370 322 357 359
75th percentile 6,090 6,385 7,790 5,638 5,915 762 3,393 5,888
no of samples 37 86 38 32 36 15 14 15
Alkalinity (mg/L) median 184 190 193 177 183 69 118 196
25th percentile 180 186 186 169 179 57 100 187
75th percentile 187 194 197 182 186 77 142 201
no of samples 37 36 38 54 36 29 36 37
pH median 8.5 8.3 8.5 8.5 8.5 7.7 8.3 8.5
25th percentile 8.3 8.0 8.3 8.3 8.4 7.6 8.0 8.4
75th percentile 8.7 8.5 8.8 8.6 8.6 7.9 8.4 8.7
no of samples 30 101 31 a7 29 29 29 30
Temperature (°C) median 16.3 16.0 16.9 17.4 16.4 16.9 16.9 16.5
25th percentile 12.4 13.0 13.1 13.0 12.2 12.8 12.4 13.2
75th percentile 19.9 20.0 20.1 21.1 19.9 21.2 19.6 19.9
no of samples 49 120 47 46 48 37 52 54
Turbidity (NTU) median 72 86 57 43 67 63 73 56
25th percentile 60 56 47 31 44 42 51 43
75th percentile 81 118 81 53 76 115 82 76
no of samples 23 26 19 28 26 11 10 11
Table 2 Lake Alexandrina — summary statistics for nutrients and chlorophyll a
Parameter Statistic Middle  Milang Points Poltalloch Top Wellington Opening Islands
Total median 2.85 3.08 2.66 2.19 2.88 0.7 1.45 2.78
Nitrogen
(mgl/L)
percentile 2.44 2.27 2.24 1.80 2.29 0.61 1.04 2.25
percentile 3.15 3.58 3.02 2.71 3.19 0.80 1.88 3.47
samples 29 29 30 51 28 26 28 29
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Parameter Statistic Middle  Milang Points Poltalloch Top Wellington Opening Islands
Ammonia median 0.009 0.008 0.008 0.008 0.011 0.017 0.010 0.008
(as N mg/L)

25th

percentile 0.007 0.007 0.006 0.006 0.007 0.010 0.005 0.005

75th

percentile 0.015 0.02 0.011 0.012 0.015 0.025 0.015 0.012

no of

samples 21 21 22 21 21 20 21 22
Oxidised median 0.005 0.006 0.008 0.005 0.006 0.036 0.005 0.005
Nitrogen
(as Nmg/L) 2ot

percentile 0.005 0.005 0.006 0.005 0.005 0.01725 0.005 0.005

75th

percentile 0.01 0.008 0.011 0.008 0.010 0.079 0.007 0.006

no of

samples 19 19 20 41 19 18 19 19
Total median 0.190 0.241 0.161 0.148 0.193 0.059 0.120 0.182
Phosphorus
(mg/L) 25th

percentile 0.156 0.173 0.149 0.116 0.151 0.055 0.094 0.137

75th

percentile 0.223 0.292 0.201 0.189 0.211 0.087 0.159 0.249

no of

samples 30 30 31 52 29 31 29 30
FRP (as P median 0.005 0.005 0.005 0.005 0.005 0.009 0.005 0.005
mg/L)

25th

percentile 0.005 0.005 0.005 0.005 0.005 0.008 0.005 0.005

75th

percentile 0.006 0.005 0.005 0.006 0.005 0.013 0.005 0.005

no of

samples 30 30 31 50 29 29 29 30
Chlorophyll  median 69.9 60.0 76.1 48.1 66.4 12.3 24.9 70.5
a (ug/L)

25th

percentile 64.1 46.8 66.6 38.3 53.5 7.0 16.5 56.2

75th

percentile 79.5 69.3 91.8 73.0 76.1 17.4 38.2 117.0

no of

samples 11 30 11 21 11 12 11 11
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Water quality in the Lower Lakes during a hydrological drought
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Water quality in the Lower Lakes during a hydrological drought

The concentration of major ions over the drought period is shown in Figure 8 and Table 3. As expected major ions
followed a similar trend to salinity, with slight decreases during winter months, until a substantial dilution from river
floodwater inflows occurred from late 2009. Similar spatial patterns to salinity were also observed with lower major ion
levels in the northern regions of the lake and higher levels in the southern region. The concentration of major ions versus
the concentration of chloride is shown in Figure 9. Most major ions showed a linear increasing trend with chloride
concentration. The exception to this was bicarbonate which only showed increases in the northern lake region during the
early drought period. Although calcium showed an initial increasing trend, the slope of this increase levelled off to be
much less than for the other major cations (magnesium, potassium, sodium).

The sulfate:chloride and alkalinity:chloride ratio are shown in Figure 8. The sulfate:chloride ratio was stable until the flood
water inflows resulted in some minor decreases and one unexplained downwards spike at Poltalloch. The
alkalinity:chloride ratio showed temporal (decreases over summer and increases over winter) and spatial (higher in
northern regions) variations.

Table 3 Lake Alexandrina — summary statistics for major ions and metals
Parameter Statistic Middle  Milang Points Poltalloch  Top Wellington Opening Islands
Calcium median 61 66 73 56 62 19 38 75
(mgi/L)

25th percentile 56 64 69 48 58 15 19 69

75th percentile 65 70 82 59 67 21 46 86

no of samples 27 10 30 27 28 28 28 29
Magnesium  median 116 148 166 95 123 16 54 161
(mgl/L)

25th percentile 98 129 121 74 106 9 19 119

75th percentile 143 162 186 112 138 18 72 195

no of samples 27 10 30 27 28 28 28 29
Potassium median 34 42 46 27 34 5 15 48
(mgiL)

25th percentile 30 31 37 22 30 3 7 35

75th percentile 40 45 51 33 38 6 20 54

no of samples 28 11 30 28 29 29 29 30
Sodium median 944 1,140 1,300 719 898 110 394 1,270
(mgi/L)

25th percentile 766 992 983 557 776 60 143 922

75th percentile 1,070 1,230 1,420 900 991 135 508 1,410

no of samples 27 10 30 27 28 28 28 29
Chloride median 1,645 1,940 2,255 1,275 1,660 164 668 2,230
(mg/L)

25th percentile 1,318 1,715 1,743 1,055 1,270 69 227 1,588

75th percentile 1,886 2,038 2,428 1,703 1,800 215 853 2,528

no of samples 30 23 31 40 29 29 29 30
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Parameter Statistic Middle  Milang Points Poltalloch  Top Wellington Opening Islands
Sulfate median 246 264 324 218 244 40.5 117 327
(mgi/L)
25th percentile 201 217 263 173 202 21 43 238
75th percentile 263 301 374 248 273 45 137 371
no of samples 29 30 31 47 29 29 29 30
Bicarbo- median 209 213 216 198 211 84 140 211
nate (mg/L)
25th percentile 203 205 208 137 202 69 122 202
75th percentile 218 222 227 213 219 94 164 219
no of samples 37 37 38 54 34 29 36 37
Total Iron median 1.59 1.58 1.49 1.38 1.50 0.71 1.36 1.36
(mgi/L)
25th percentile 1.09 1.03 1.02 0.92 0.88 0.51 0.68 0.92
75th percentile 2.49 2.39 2.07 2.00 2.18 1.34 2.05 2.43
no of samples 29 11 31 27 29 29 29 30
Total median 1.31 1.19 1.31 1.12 1.30 0.84 0.88 1.30
Aluminium )
(mg/L) 25th percentile 0.94 0.71 0.82 0.67 0.67 0.49 0.56 0.67
75th percentile 2.14 2.28 1.85 1.71 2.15 1.24 1.80 2.15
no of samples 29 11 31 21 29 29 29 30
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Figure 10

Lake Alexandrina — sulfate:chloride and alkalinity:chloride ratio (molar units)

The total metal (iron and aluminium) concentrations in Lake Alexandrina are shown in Figure 11. Levels were variable
throughout 2008—-09 but appear to be higher in winter months. However metal concentrations appear to be greatly
reduced in winter 2010. These metals are plotted versus turbidity and each other in Figure 12 to assess whether the
variability is related to turbidity, and hence water levels and wind events. There is not a strong relationship between metal

levels and turbidity although

the aluminium and iron were strongly correlated to each other.
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Total Al versus turbidity
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Water quality in the Lower Lakes during a hydrological drought

Lake Albert

The water quality in Lake Albert from 2008-10 is summarised in Tables 4—6 and Figures 13-22. Salinity levels followed a
rapidly increasing trend from 2008-09, with slight decreases during winter months, until a substantial decrease occurred
in 2010 (Figure 13). This decrease resulted from dilution following pumped inflow of a substantial amount of low salinity in
the Lake Alexandrina water and winter rainfall. During the drought a distinct spatial variation in salinity was observed
when pumping from Lake Alexandrina occurred with lower levels near the Narrung Narrows (Opening site) grading to
higher levels in the southwest region (South West and Meningie sites). Following the breaching of the bund this spatial
variation was accentuated.

pH exhibited some minor temporal variability but little spatial variability, and was maintained within ANZECC guideline
levels (pH 6.5-9.0) throughout the drought period. Alkalinity was quite temporally variable with lower levels generally in
winter months and a marked increase in early 2010. There was also a distinct spatial variability in alkalinity with lower
levels at the Opening site when inflows from Lake Alexandrina occurred via pumping in the summers of 2008—09 and
2009-10. Temperature was similar at all sites with a distinct seasonal variation. Turbidity showed a great deal of temporal
variability, but relatively little spatial variation. A reduction in turbidity occurred during 2010.

The nutrient and chlorophyll a concentrations in Lake Albert are shown in Table 5 and Figures 14-15. Total nitrogen, total
phosphorus and chlorophyll a were at high levels and followed a general increasing trend over the drought period. There
was some seasonal variation in these parameters, particularly in TN and chlorophyll a levels, but no consistent spatial
variation. A marked reduction in levels of these parameters occurred across all sites following the removal of the Narrung
embankment. Soluble nutrients (ammonia, oxidised nitrogen and filtered reactive phosphorus) generally remained at very
low levels throughout the monitoring period, with the exception of some increases in soluble nitrogen and ammonia from
mid-2010 at the Water Level Recorder site.

The phytoplankton population was dominated by blue-green algae (cyanobacteria), predominantly Planktolyngbya,
Aphanocapsa and Planctonema species although a large, potentially toxic Nodulariaspumigena bloom occurred during
late 2009 (Figure 16, note log scale). Green-algal species showed some increases in late 2009, coinciding with increased
floodwater inflows to Lake Alexandrina (pumped to Albert from January to June 2010) and diatoms show seasonal trends
(generally highest in winter).

Dissolved oxygen was maintained at near-saturation (8—9 mg/L) throughout the drought in Lake Albert (Figure 17).
Colour shows some seasonal variation (highest in summer) and this trend is more pronounced for the dissolved organic
carbon data collected during 2009 (Figure 17).

Table 4 Lake Albert — summary statistics for general water quality parameters
Parameter Statistic Meningie Opening Southwest Water Level Recorder
Salinity (us/cm) median 10,160 7,730 11,000 9,805
25th percentile 5,965 5,500 9,390 5,610
75th percentile 12,110 9,860 13,320 11,500
no of samples 79 65 57 70
Alkalinity (mg/L) median 251 239 251 247
25th percentile 235 221 241 237
75th percentile 264 248 266 257
no of samples 80 69 61 74
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Parameter Statistic Meningie Opening South West Water Level Recorder

pH median 8.6 8.6 8.5 8.5
25th percentile 8.4 8.4 8.4 8.4
75th percentile 8.6 8.7 8.6 8.7
no of samples 84 69 60 64

Temperature (°C) median 141 14.8 14.3 14.6
25th percentile 11.8 12.4 12.5 12.2
75th percentile 18.1 18.3 18.3 18.3
no of samples 35 21 27 26

Turbidity (NTU) median 89 90 105 91
25th percentile 58 57 77 60
75th percentile 120 114 130 117
no of samples 75 63 55 66
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Figure 13 Lake Albert — general water quality parameters

28



Water quality in the Lower Lakes during a hydrological drought

Table 5 Lake Albert — summary statistics for nutrients and chlorophyll a
Parameter Statistic Meningie  Opening Southwest Water Level Recorder
Total Nitrogen (mg/L) median 3.74 3.58 4.07 3.72
25th percentile 3.11 2.98 3.54 3.20
75th percentile 4.36 4.14 4.54 4.24
no of samples 74 68 1 70
Ammonia (as N mg/L) median 0.012 0.010 0.009 0.011
25th percentile 0.009 0.008 0.009 0.008
75th percentile 0.016 0.013 0.014 0.023
no of samples 16 17 24 23
Oxidised Nitrogen (as N median 0.006 0.006 0.007 0.007
mg/L)
25th percentile 0.005 0.005 0.005 0.005
75th percentile 0.008 0.008 0.010 0.010
no of samples 75 69 59 71
Total Phosphorus (mg/L) median 0.190 0.205 0.218 0.202
25th percentile 0.155 0.166 0.167 0.155
75th percentile 0.222 0.246 0.265 0.234
no of samples 75 68 71
FRP (as P mg/L) median 0.005 0.005 0.005 0.005
25th percentile 0.005 0.005 0.005 0.005
75th percentile 0.006 0.006 0.006 0.005
no of samples 73 67 59 70
Chlorophyll a (ng/L) median 72 89 84 79
25th percentile 54 76 70 53
75th percentile 93 111 112 112
no of samples 61 53 43 58
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Water quality in the Lower Lakes during a hydrological drought

LakeAlbert Chlorophyll a
250
200 A1
= — Meningie
=)
2 150 A
<_( Opening
=
e
g 100 A — South West
°
5 Water Level
50 V/\ Recorder
0 T T T T T T T T
3/01/08 12/04/08 21/07/08 29/10/08 6/02/09 17/05/09 25/08/09 3/12/09 13/03/10 21/06/10
Date
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Figure 16 Lake Albert — algal speciation (Southwest site). Note log scale used for blue-green algae.
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Water quality in the Lower Lakes during a hydrological drought

The concentration of major ions over the drought period is shown in Figure 18 and Table 6. As expected major ions
followed a similar trend to salinity, with a general increasing trend over 2008—09 and slight decreases during winter
months. Following the pumping of lower salinity water during 2010, major ion concentrations rapidly decreased due to
dilution from the large volumes of less saline Lake Alexandrina water entering.

Similar spatial patterns to salinity were observed with lower major ion levels in the northern regions of the lake near the
Narrung Narrows (Opening site) following pumping and higher levels in the southern region (Meningie and South West
sites). The concentration of major ions versus the concentration of chloride is shown in Figure 19. Most major ions
showed a linear increasing trend with chloride concentration. The exception to this was bicarbonate which showed only
very minor increases. Although calcium showed an increasing trend the slope of this increase was less than for the other
major cations (magnesium, potassium, sodium).

The sulfate:chloride and alkalinity:chloride ratios are shown in Figure 20. The sulfate:chloride ratio was relatively stable
until the pumping in early 2010 decreased the ratio. However, in mid-2010 this ratio markedly increased and is now
similar to the ratio found at the site nearest (Poltalloch) to the Narrung Narrows in Lake Alexandrina (Figure 8). The
alkalinity:chloride ratio showed temporal (decreases over summer and increases over winter) and spatial (higher at
Opening site during pumping) variations.
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Figure 18
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Water quality in the Lower Lakes during a hydrological drought

Table 6 Lake Albert — summary statistics for major ions and metals
Parameter Statistic Meningie Opening Southest Water Level Recorder
Calcium (mg/L) median 96 77 100 91
25th percentile 70 67 88 68
75th percentile 109 94 108 104
no of samples 57 68 59 70
Magnesium (mg/L) median 245 178 262 121
25th percentile 142 129 218 218
75th percentile 303 242 309 309
no of samples 57 68 59 70
Potassium (mg/L) median 62 47 118 59
25th percentile 39 36 68 37
75th percentile 76 61 260 71
no of samples 58 68 60 71
Sodium (mg/L) median 1,790 1,690 1,890 1,685
25th percentile 984 1,100 1,570 931
75th percentile 2,160 2,010 2,215 2,010
no of samples 57 68 59 70
Chloride (mg/L) median 3,165 2,270 3,340 2,960
25th percentile 1,735 1,620 2,930 1,545
75th percentile 3,863 3,030 4,030 3,515
no of samples 68 69 59 71
Sulfate (mg/L) median 5,46 369 582 507
25th percentile 312 273 486 280
75th percentile 663 519 663 600
no of samples 69 69 59 71
Bicarbonate (mg/L)  median 279 266 287 276
25th percentile 266 244 268 264
75th percentile 295 280 302 296
no of samples 66 69 60 71
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Parameter Statistic Meningie Opening Southest Water Level Recorder
Total Iron (mg/L) median 1.34 2.05 3.06 1.85
25th percentile 0.82 1.05 1.63 1.06
75th percentile 2.95 3.92 4.93 3.94
no of samples 58 69 59 71
Total Aluminium median 0.96 1.67 2.49 1.50
(mg/L)
25th percentile 0.63 0.76 1.20 0.83
75th percentile 251 3.36 4.45 3.72
no of samples 54 69 57 71
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Figure 19 Lake Albert — major ions versus chloride. A linear trendline is fitted for the Water Level Recorder site.
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Figure 20 Lake Albert — sulfate:chloride and alkalinity:chloride ratio

The total metal (iron and aluminium) concentrations in Lake Albert are shown in Figure 21. Levels were variable

throughout 2008—09 but appear to be higher in winter months. Metal concentrations decreased and remained relatively
low since the beginning of 2010. These metals are plotted versus turbidity and each other in Figure 22 to assess whether
the variability is related to turbidity, and hence water levels and wind events. There is a poor relationship between metal

levels and turbidity although the aluminium and iron were strongly correlated to each other.
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Figure 21

Lake Albert — metals (total iron and aluminium)
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Total Al versus turbidity
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Currency Creek, Finniss River and Goolwa Channel region

From 2008-10, the water quality in the Goolwa Channel, Currency Creek and Finniss River tributaries region is
summarised in Tables 7-10 and Figures 23-32. Salinity levels followed a general increasing trend until the Goolwa
Channel temporary flow regulator construction in mid-2009 (Figure 23). As the pool behind the regulator rapidly filled from
less saline tributary flows, salinity levels decreased due to dilution from mid- to late-2009. Salinity increased again from
early 2010, as water levels decreased over the summer months and then decreased when the tributary flows occurred
again in winter. A distinct spatial variation in salinity was observed with higher levels in the Goolwa Channel region
(Clayton and Goolwa sites) grading to lower levels near the Currency Creek and Finniss River entrances (Currency 1 and
Finniss 1 sites).

Alkalinity increased as the water level declined from 2008 to early 2009. At time of the first winter rains in late April 2009,
the entire Currency Creek region had dried out with large areas of acid sulfate soils exposed and oxidised. As this area
refilled with winter rainfall a large decrease in alkalinity occurred and many sites completely lost alkalinity. This resulted in
pH well below ANZECC (2000) guideline levels (pH 6.5-9.0) to protect freshwater aquatic ecosystems (Figure 23).

Following trials of aerial, mounded, barrier and slurry limestone dosing (3,000 tonnes), alkalinity was restored and pH
neutralised at all sites. The construction of the Goolwa Channel temporary flow regulator then resulted in a rapid rise in
water levels and higher alkalinities. In the summer of 2009—-10 water levels declined again and alkalinity became very low
in the Upper Currency Creek region (Currency 1, 2 and upstream sites). These low levels increased during the winter of
2010. With the exception of when alkalinity was absent in the water body, pH levels were quite stable.

Temperature was similar at all sites with a distinct seasonal variation (Figure 23). Turbidity was at high levels and showed
a great deal of variability, particularly in the upper Finniss region during the water level declines and sediment drying of
the 2008-09 summer (Figure 19). Following construction of the Clayton and Currency temporary flow regulators, turbidity
levels were much lower.

The nutrient and chlorophyll a concentrations in the Goolwa Channel and Tributaries region are shown in Table 8 and
Figures 24-25. Nutrient and chlorophyll a concentrations followed a general increasing trend over the early drought
period (2008—09 summer). Following rewetting of the area (and acidification in Currency Creek region) in winter 2009,
large total and soluble nutrient releases occurred (Figure 24). Algal productivity also increased as evidenced by the
chlorophyll a results (Figure 25). When the pool behind the regulator filled, nutrient and chlorophyll a levels declined and
stabilised. The exception to this was the Clayton site which showed some large increases in total nitrogen and
phosphorus.

The phytoplankton population was dominated by green algae through 2009, predominantly the Chlorella species (Figure
26, note log scale). In 2010, blue-green algae (cyanobacteria) became more dominant, predominantly Synechocystis and
Synechococcus species (Figure 26, note log scale). There were also a small but notable number of flagellates recorded
during 2010 (Figure 26).

Dissolved oxygen was maintained at near-saturation (7—8 mg/L) throughout the drought in the Goolwa Channel and
Tributaries region (Figure 27). Dissolved organic carbon shows a seasonal variation peaking in the summer months
(Figure 27).
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Table 7 Goolwa Channel and Tributaries — summary statistics for general water quality parameters
Parameter Statistic Clayton Currency 1 Currency 2 Currency 3  Finniss1 Finniss2 Finniss 3 Goolwa CC Upstream

Salinity (uS/cm) median 10,800 16,154 15,300 16,700 9,500 10,600 13,100 20,,600 16,800
25th percentile 8,055 10,300 10,700 13,900 4,910 7,360 9,585 16,683 11,650
75th percentile 11,700 20,600 19,300 22,050 12,900 14,900 17,450 22,350 20,500
no of samples a7 53 59 39 59 59 55 30 35

Alkalinity (mg/L) median 205 86 81 175 121 146 175 175 42
25th percentile 181 62 58 154 80 114 168 166 33
75th percentile 215 106 110 183 137 154 180 181 48
no of samples 51 57 61 38 65 67 52 40 35

pH median 8.40 8.70 8.60 8.30 8.20 8.20 8.50 8.30 8.40
25th percentile 8.10 7.60 7.80 8.10 7.80 7.95 8.20 8.20 7.65
75th percentile 8.70 8.90 8.98 8.60 8.30 8.40 8.60 8.50 8.70
no of samples 44 50 54 31 57 59 45 33 35

Temperature (°C)  median 16.4 18.2 17.8 16.9 16.6 17.6 17.4 16.3 17.2
25th percentile 12.6 145 14.5 14.3 13.5 14.2 14.6 13.0 13.6
75th percentile 19.7 21.7 21.6 22.0 23.1 23.1 22.2 20.3 21.7
no of samples 38 46 45 46 46 48 56 43 29

Turbidity (NTU) median 31 23 16 15 97 54 13 4 n/a
25th percentile 25 11 7 8 65 22 5 3 n/a
75th percentile 46 44 24 21 163 100 24 8 n/a
no of samples 33 18 15 34 12 17 56 25 n/a

42




Water quality in the Lower Lakes during a hydrological drought
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Figure 23 Goolwa Channel and Tributaries — general water quality parameters
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Table 8 Goolwa Channel and Tributaries — summary statistics for nutrients and chlorophyll a
Parameter Statistic Clayton  Currency 1  Currency 2 Currency 3 Finniss1 Finniss2 Finniss3 Goolwa CC Upstream

Total nitrogen (mg/L) median 3.33 2.02 1.93 2.10 2.07 2.05 2.15 2.04 1.97
25th percentile  2.24 1.78 1.78 1.93 1.82 1.83 2.01 181 1.77
75th percentile  4.93 2.55 2.27 2.50 2.34 2.38 2.38 2.39 2.12
no of samples 42 50 50 30 58 57 46 35 34

Ammonia (as N mg/L) median 0.013 0.012 0.010 0.014 0.010 0.012 0.017 0.019 0.009
25th percentile  0.009 0.008 0.007 0.009 0.008 0.007 0.010 0.009 0.007
75th percentile  0.016 0.027 0.022 0.060 0.025 0.032 0.032 0.047 0.016
no of samples 44 50 52 30 57 59 46 33 35

Oxidised nitrogen (as N mg/L) median 0.005 0.005 0.007 0.006 0.005 0.006 0.007 0.013 n/a
25th percentile  0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 n/a
75th percentile  0.150 0.005 0.016 0.034 0.012 0.105 0.034 0.026 n/a
no of samples 19 50 26 30 58 36 46 23 0

Total phosphorus (mg/L) median 0.155 0.056 0.053 0.087 0.073 0.071 0.084 0.104 0.042
25th percentile  0.127 0.039 0.035 0.065 0.061 0.050 0.057 0.062 0.036
75th percentile  0.190 0.100 0.094 0.138 0.127 0.104 0.132 0.152 0.058
no of samples 44 50 52 30 58 59 46 37 35
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Parameter Statistic Clayton  Currency 1  Currency 2 Currency 3 Finniss1 Finniss2 Finniss3 Goolwa CC Upstream

FRP (as P mg/L) median 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

25th percentile  0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.003

75th percentile  0.006 0.005 0.005 0.005 0.006 0.005 0.005 0.006 0.005

no of samples 39 30 30 29 37 40 37 36 20
Chlorophyll a (ug/L) median 74.8 7.0 9.6 22,5 30.5 27.4 26.9 22.2 n/a

25th percentile  72.7 3.5 6.4 11.9 16.7 8.4 12.9 20.0 n/a

75th percentile  76.6 16.1 18.1 31.5 45.2 35.9 59.8 54.1 n/a

no of samples 3 17 17 35 18 20 28 7 n/a
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Figure 24  Goolwa Channel and Tributaries — nutrients
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Figure 25 Goolwa Channel and Tributaries — Chlorophyll a
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Figure 26 Goolwa Channel and Tributaries — blue-green algae, green algae, and flagellates (at Goolwa site). Note log
scale used for blue-green and green algae.
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Figure 27 Goolwa Channel and Tributaries — dissolved oxygen and dissolved organic carbon

The concentration of major ions over the drought period is shown in Figure 28 and Table 9. As expected major ions
followed a similar trend to salinity, with (1) a rapidly increasing trend over the summer of 2008-2009, (2) decreases
during winter 2009 due to tributary flows and refilling of the pool behind the Goolwa Channel temporary flow regulator,
and (3) increases over the summer of 2009-10 and (4) decreases in winter 2010 as the Tributaries began to flow again.
Similar spatial patterns to salinity were also observed. The concentration of major ions versus the concentration of
chloride is shown in Figure 29. For most of the sites, major ions showed a linear increasing trend with chloride
concentration. The exception to this was bicarbonate which showed a great deal of variability within and between sites. At
the Currency 1, 2 and 3 sites (sites which dried, acidified and were limestone dosed) there were increases in all major ion
concentrations above that predicted by the chloride concentration. This suggests a source of these major ions that is not
directly related to dilution and evaporative concentration and is likely related to acid sulfate soil influences and/or
additional of limestone (predominantly CaCOj; but contains other elements such as Mg) to the water body.

The sulfate:chloride and alkalinity:chloride ratio is shown in Figure 30. The sulfate:chloride ratio was relatively stable until
the acidification in winter 2009 when levels increased markedly, particularly at the upper Currency Creek sites. This
suggests a likely source of sulfate that is related to acid sulfate soil exposure and rewetting. Following the construction of
the regulators this ratio stabilised across all sites. The alkalinity:chloride ratio showed temporal (decreases over summer
and increases over winter) and spatial (lower in upper Currency, higher at Clayton) variation.
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Water quality in the Lower Lakes during a hydrological drought

Table 9 Goolwa Channel and Tributaries — summary statistics for major ions
Parameter Statistic Clayton Currency 1 Currency 2  Currency 3 Finniss1 Finniss 2 Finniss 3 Goolwa CC Upstream
Calcium (mg/L) median 109 264 241 198 153 155 155 217 293
25th percentile 98 202 182 184 94 109 136 176 193
75th percentile 129 346 286 214 181 196 183 252 337
no of samples 42 45 49 24 56 57 45 31 35
Magnesium (mg/L) median 255 409 383 454 231 281 315 508 418
25th percentile 214 306 280 362 143 181 252 399 265
75th percentile 305 533 477 597 305 371 401 668 490
no of samples 42 46 49 24 56 57 45 31 35
Potassium (mg/L) median 69 123 116 129 62 80 89 146 129
25th percentile 58 79 77 101 39 52 71 128 77
75th percentile 83 164 150 180 95 103 116 199 148
no of samples 44 44 49 18 51 57 44 33 35
Sodium (mg/L) median 1,890 3,200 2,870 3,585 1,645 2,080 2,390 3,900 3,000
25th percentile 1,640 2,130 1,950 2,750 999 1,330 1,800 3,085 1,955
75th percentile 2,360 4,300 3,780 4,780 2,308 2,760 3,110 5,675 3,680
no of samples 42 45 49 23 56 57 45 31 35
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Parameter Statistic Clayton Currency 1 Currency 2  Currency 3 Finniss1 Finniss 2 Finniss 3 Goolwa CC Upstream
Chloride (mg/L) median 3,500 5,270 5,030 6,400 2,750 3,700 4,130 7,410 5,220
25th percentile 2,680 3,360 3,330 4,430 1,585 2,080 2,980 5,380 3,375
75th percentile 3,793 6,820 6,395 8,650 4,293 5,050 6,015 10,000 6,745
no of samples 44 47 49 26 60 57 47 33 35
Sulfate (mg/L) median 545 1,280 1,130 938 594 627 761 1,120 1,490
25th percentile 461 822 793 642 324 416 542 931 893
75th percentile 615 1,590 1,525 1,120 843 927 990 1,465 1,810
no of samples 44 49 53 31 56 59 46 32 35
Bicarbonate (mg/L) median 229 84 77 201 147 173 202 205 49
25th percentile 204 59 50 191 98 138 193 191 39
75th percentile 245 110 112 212 164 184 213 219 56
no of samples 44 52 56 32 61 62 47 33 35
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Goolwa Channel and Tributaries — major ions versus chloride
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Figure 30 Goolwa Channel and Tributaries — sulfate:chloride and alkalinity:chloride ratio

The metal concentrations in the Goolwa Channel and Tributary region are shown in Figures 31-32 and Table 10. Total
metal levels increased gradually throughout the summer of 2008-09, however very large increases occurred following the
rewetting of the area in winter 2009. Increases were particularly large at the acidified Currency Creek sites, but were also
apparent to a lesser extent at the non-acidic Finniss River sites. Soluble iron and aluminium concentrations were also
very high when Currency Creek was acidic (Figure 31). Other soluble and total fraction metals, in particular manganese,
cobalt and arsenic also increased during the acidification (Figure 32). Total and soluble metal concentrations have
decreased and remained low since the construction of the Goolwa Channel temporary flow regulator.
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Figure 31

Goolwa Channel and Tributaries — metals (total and soluble iron and aluminium)
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Table 10 Goolwa Channel and Tributaries — summary statistics for metals (all concentrations in mg/L)
Parameter — mg/L Statistic Clayton  Currency 1  Currency 2  Currency 3 Finniss 1 Finniss 2  Finniss 3 Goolwa CC Upstream

Aluminium (soluble)  median 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
25th percentile 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
75th percentile 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
No of samples 42 46 49 26 60 55 47 33 35

Aluminium (total) median 0.47 0.11 0.21 0.16 0.59 0.30 0.12 0.06 0.06
25th percentile 0.18 0.05 0.05 0.07 0.17 0.10 0.06 0.02 0.03
75th percentile 0.74 0.33 0.59 0.25 2.00 1.06 0.39 0.08 0.09
no of samples 44 47 49 26 59 57 46 32 35

Arsenic (soluble) median 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003
25th percentile 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
75th percentile 0.006 0.003 0.003 0.003 0.003 0.003 0.003 0.00475 0.003
no of samples 33 43 45 22 48 48 37 22 35

Arsenic (total) median 0.007 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003
25th percentile 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
75th percentile 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.003
no of samples 25 34 39 11 48 37 25 22 35
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Parameter — mg/L Statistic Clayton  Currency 1  Currency 2  Currency 3 Finniss 1 Finniss 2  Finniss 3 Goolwa CC Upstream

Chromium (soluble)  median #N/A 0.001 0.001 #N/A 0.001 0.001  #N/A #N/A 0.001
25th percentile  #NJ/A 0.00055 0.001 #N/A 0.00025 0.0003 #N/A #N/A 0.001
75th percentile  #NJ/A 0.0035 0.005 #N/A 0.001 0.001  #N/A #N/A 0.001
no of samples 0 11 9 0 10 9 0 0 3

Chromium (total) median #N/A 0.0025 0.0026 #N/A 0.00205 0.002 #N/A #N/A 0.001
25th percentile #N/A 0.001 0.001 #N/A 0.002 0.001 #N/A #N/A 0.001
75th percentile #N/A 0.0045 0.009 #N/A 0.004675 0.0026  #N/A #N/A 0.001
no of samples 0 11 9 0 10 9 0 0 3

Cobalt (soluble) median #N/A 0.0086 0.011 #N/A 0.005 0.005  #N/A #N/A 0.005
25th percentile  #NJ/A 0.005 0.005 #N/A 0.000325 0.0003 #N/A #N/A 0.005
75th percentile  #N/A 0.041 0.082 #N/A 0.005 0.005  #N/A #N/A 0.005
no of samples 0 11 9 0 10 9 0 0 3

Cobalt (total) median #N/A 0.01 0.011 #N/A 0.005 0.005 #N/A #N/A 0.005
25th percentile  #NJ/A 0.005 0.005 #N/A 0.00335 0.0027 #NJ/A #N/A 0.005
75th percentile  #NJ/A 0.042 0.085 #N/A 0.005 0.005  #N/A #N/A 0.005
no of samples 0 11 9 0 10 9 0 0 3

57



Water quality in the Lower Lakes during a hydrological drought

Parameter — mg/L Statistic Clayton Currency 1 Currency 2 Currency 3 Finniss 1 Finniss 2 Finniss 3 Goolwa CC Upstream

Copper (soluble) median #N/A 0.005 0.005 #N/A 0.005 0.005 #N/A #N/A 0.005
25th percentile #N/A 0.00345 0.005 #N/A 0.001525 0.0019  #N/A #N/A 0.005
75th percentile #N/A 0.01 0.01 #N/A 0.00875 0.01 #N/A #N/A 0.005
no of samples 0 11 9 0 10 9 0 0 3

Copper (total) median #N/A 0.006 0.006 #N/A 0.005 0.005 #N/A #N/A 0.005
25th percentile #N/A 0.0044 0.005 #N/A 0.004475 0.005 #N/A #N/A 0.005
75th percentile #N/A 0.01 0.01 #N/A 0.01 0.01 #N/A #N/A 0.005
no of samples 0 11 9 0 10 9 0 0 3

Iron (soluble) median 0.005 0.021 0.023 0.006 0.013 0.007 0.005 0.006 0.034
25th percentile 0.005 0.009 0.008 0.005 0.005 0.005 0.005 0.005 0.022
75th percentile 0.016 0.041 0.074 0.014 0.031 0.019 0.013 0.012 0.062
no of samples 42 46 49 26 59 54 46 30 35

Iron (total) median 0.59 0.28 0.75 0.23 1.12 0.67 0.25 0.13 0.52
25th percentile 0.30 0.17 0.25 0.13 0.38 0.23 0.15 0.07 0.35
75th percentile 0.93 0.94 212 0.45 2.76 1.76 0.58 0.19 0.79
no of samples 44 47 49 26 60 57 a7 32 35

Manganese (soluble) median 0.003 0.019 0.004 0.002 0.0039 0.003 0.002 0.003 0.657
25th percentile 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.002 0.38925
75th percentile 0.0145 1.76 1.335 0.007 0.0075 0.0075 0.005 0.008 0.8085
no of samples 33 29 28 25 42 36 30 30 4
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Parameter — mg/L Statistic Clayton Currency 1 Currency 2 Currency 3 Finniss 1 Finniss 2 Finniss 3 Goolwa CC Upstream
Manganese (total) median 0.061 0.034 0.05 0.026 0.066 0.05 0.042 0.036 0.664
25th percentile 0.042 0.016 0.00575 0.017 0.039 0.039 0.026 0.01125 0.40125
75th percentile 0.082 1.975 1.3825 0.056 0.10525 0.10525 0.056 0.06675 0.819
no of samples 33 29 28 25 42 36 30 30 4
Nickel (soluble) median #N/A 0.026 0.028 #N/A 0.005 0.005 #N/A #N/A 0.01
25th percentile #N/A 0.0085 0.008 #N/A 0.00385 0.00385  #N/A #N/A 0.0095
75th percentile #N/A 0.11925 0.147 #N/A 0.005 0.005 #N/A #N/A 0.01
no of samples 0 11 9 0 10 9 0 0 3
Nickel (total) median #N/A 0.031 0.029 #N/A 0.0056 0.005 #N/A #N/A 0.009
25th percentile #N/A 0.01 0.008 #N/A 0.005 0.005 #N/A #N/A 0.009
75th percentile #N/A 0.1195 0.154 #N/A 0.006375 0.006375  #N/A #N/A 0.01
no of samples 0 11 9 0 10 9 0 0 3
Selenium (soluble) median #N/A #N/A #N/A #N/A 0.001 0.004 #N/A #N/A 0.001
25th percentile #N/A #N/A #N/A #N/A 0.001 0.001 #N/A #N/A 0.001
75th percentile #N/A #N/A #N/A #N/A 0.001 0.001 #N/A #N/A 0.001
no of samples 0 0 0 0 1 1 0 0 3
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Parameter — mg/L Statistic Clayton  Currency 1  Currency 2  Currency 3 Finniss 1 Finniss 2 Finniss3  Goolwa CC Upstream

Selenium (total) median #N/A 0.001 0.001 #N/A 0.001 0.001 #N/A #N/A #N/A
25th percentile  #N/A 0.0007 0.001 #N/A 0.001 0.001 #N/A #N/A #N/A
75th percentile  #N/A 0.001 0.001 #N/A 0.001 0.001 #N/A #N/A #N/A
no of samples 0 11 9 0 10 9 0 0 0

Zinc (soluble) median #N/A 0.005 0.016 #N/A 0.005 0.005 #N/A #N/A 0.005
25th percentile  #N/A 0.005 0.005 #N/A 0.00155 0.00155 #N/A #N/A 0.005
75th percentile  #N/A 0.03 0.153 #N/A 0.02375 0.02375 #N/A #N/A 0.005
no of samples 0 11 9 0 10 9 0 0 3

Zinc (total) median #N/A 0.0119 0.034 #N/A 0.01075 0.007 #N/A #N/A 0.005
25th percentile  #N/A 0.007 0.005 #N/A 0.009275 0.009275 #N/A #N/A 0.005
75th percentile  #N/A 0.03495 0.158 #N/A 0.029125 0.029125 #N/A #N/A 0.0055
no of samples 0 11 9 0 10 9 0 0 3
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Acidification events

In addition to the Currency Creek region, several other surface water acidification events occurred during 2008-2010
(Figure 33 and Table 11). These areas were on the shallow lake margins, often in embayments which have limited
connection with the main lake water body (Figure 33). The total area that acidified was estimated to be 2,173 ha, which
represented about 3% of the Lower Lakes surface water area. Different severities and durations (ranging from weeks to
months) of acidification were observed. Neutralisation of acidification was accomplished naturally in several areas by
dilution and alkalinity input following a rapid rise in lake levels following Murray—Darling Basin floodwater inflows during
2010.

Treatment of acidification via aerial, barrier, mound and slurry limestone addition occurred at Currency Creek and aerial
limestone addition took place at Boggy Lake, and both exercises were highly successful in achieving neutralisation over
large areas. The Currency Creek acidification and management has been discussed above in the Goolwa Channel and
Tributaries section. Water quality results from two other sites where substantial acidification occurred, Loveday Bay and

Boggy Lake, are discussed in further detail.

Location &rea (km') Time pericd pH range

Lake Alexandrina .

1 Currency Creek 521 SISR2009=11/92000 3.2-6.3

? Loveda ; Bay  3.21 148120081 2/52000  2.3-5.0 MURRAY RIVER ™,
3 [Dunn's Lagoon 102 SHa2000 2857 }
4 Baogay Lake BG2 120200392010 2265

5 Sak lagoon 215 AT R2010-3182010 3557

& [Cog Lake 1.64 ammo=-2272M0 4.7-6.5

T Bogay Cresk 003 120201 0-317872010  2.8-3.9

& Hunters Cresk 005 BARZ2010=168M2010 3.2-64

Lake Albert

a Ready Point 1.03 1220 0-21/672010 3 365

10 Rumply Foint 0.47 1S5 A201 0300802040 3.7-51

/ e, LAKE ALBERT
b _

Depth (m AHD)

-

S A3t -2
. — SOUTHERN
i B 2t OCEAN
: At 0
0 §  10km
" L [ Jowd

Figure 33 Regions (red hatched areas) of the Lower Lakes that experienced surface water acidification during
2008-10. (Source: EPA, DENR data)
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Table 11 — Surface water acidification events in the Lower Lakes region during 2009-10

Acidification region Water level Acidified Acidification period® pH range® Neutralisation process
(m AHD) area (ha)*

Lake Alexandrina

Currency Creek 0 521 5/5/2009-11/9/2009 3.2-6.3 Aerial limestone addition (1,000 tonnes plus 2,000 tonnes in
limestone barriers), raising water levels via regulator
construction and alkalinity addition via pumping

Loveday Bay 0 321 14/8/2009-12/5/2010  2.3-5.0 Dilution and alkalinity addition from lake refill

Dunn’s Lagoon® -0.25 102 5/08/2009 2.84-5.68 Dilution and alkalinity addition from lake refill

Boggy Lake 0.25 692 12/4/2010-3/9/2010 2.2-6.5 Aerial limestone addition (1,000 tonnes), dilution and alkalinity
addition from lake refill

Salt lagoon 0 215 1/7/2010-3/8/2010 3.5-5.7 Dilution and alkalinity addition from lake refill

Dog Lake 0.5 164 8/7/2010-22/7/2010 4.7-6.5 Dilution and alkalinity addition from lake refill

Boggy Creek 0 3 12/8/2010-31/8/2010 2.6-3.9 Dilution and alkalinity addition from lake refill

Hunter’s Creek 0.4 5 8/9/2010-16/9/2010 3.2-6.4 Dilution and alkalinity addition from lake refill

Lake Albert

Reedy Point 0 103 12/5/2010-21/6/2010  3.3-6.5 Dilution and alkalinity addition from lake refill

Rumply Point 0 47 15/4/2010-30/8/2010  3.7-5.1 Dilution and alkalinity addition from lake refill

TOTAL 2,173
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The area of acidified water is calculated using acidic surface water quality monitoring sites from 2009-10 (Source: DENR)
Beginning of acidification period may have preceded monitoring in some instances
pH range is only shown for values below ANZECC (2000) guidelines value of 6.5 (that indicates acidification).

Pore water monitoring sites are included in the acidified area for Dunns Lagoon (only one site was a surface water quality monitoring site).
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Loveday Bay

Loveday Bay is a shallow lagoon located at the southeastern shore of Lake Alexandrina (Figures 33 and 34). When lake
water levels fell below about 0 m AHD, about half of the lagoon (separated by a natural sand barrier) disconnected from
Lake Alexandrina. A large area of this disconnected region dried in the summer of 2008-09 resulting in oxidation of acid
sulfate soils. Following rewetting from winter rains in 2009 the area was sampled by CSIRO during a soil sampling project
(Fitzpatrick et al 2010). They discovered large areas of acidic water and the water quality in the region was then sampled
by the EPA over the subsequent months (Figure 34).

The disconnected area of the lagoon (sites LB1, 5 and 6) displayed large areas of very acidic water (pH <3 and high
acidities) during 2009 and into the summer of 2010 when this area completely dried out (Figure 35). Iron precipitates and
partially or completely dissolved mussel shells were also observed. Sites on the Lake Alexandrina side of the natural
sand barrier (sites LB 8 and 9) remained neutral and connected to the main lake water body. Following the rapid rise in
water levels during early 2010, the whole of Loveday Bay reconnected with Lake Alexandrina, and pH was returned to
neutral level via natural dilution and neutralisation processes.
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Figure 34 — Loveday Bay sample sites
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Loveday Bay — general water quality parameters
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Water quality in the Lower Lakes during a hydrological drought

Boggy Lake

Boggy Lake is a shallow lagoon situated within the northwestern corner of Lake Alexandrina (Figures 33 and 36). During
the water level declines from 2008—-09, Boggy Lake became disconnected from the main lake water body. As a
consequence large areas of acid sulfate soils (predominantly cracking clays, see front cover of this report) were exposed
allowing the oxidation of pyrite to occur (Fitzpatrick 2010). During May 2010, rainfall events and water level increases in
Lake Alexandrina progressively reinundated the Boggy Lake region.

Very acidic water (pH 2-3) was observed to be present over a large area, particularly in the western and northwestern
margins of the lagoon that were furthest away from the main lake water body (Figure 37). The most acidic sections of the
lagoon had low turbidity, very high acidity (up to 2,500 mg/L as CaCO3), and very high dissolved metal (Al, Fe)
concentrations. The acidified water increased in pH and reduced in acidity as they mixed with the alkaline waters of Lake
Alexandrina. Orange and brown iron oxide precipitates were formed as the water was neutralised with precipitates
(schwertmannite identified by CSIRO using X-ray diffraction) also found in non-acidic areas.

DENR undertook a series of aerial limestone dosing events (total of 1,000 tonnes) as shown by the dashed lines on
Figure 37. Each dosing event reduced the water acidity and finally resulted in the water body becoming completely
neutralised in early September 2010. Where pH was less than approximately 6.5, very large soluble aluminium levels
were recorded above ANZECC guidelines for protection of aquatic organisms (Figure 38).
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Figure 36 Boggy Lake monitoring sites
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Soluble Aluminium vs pH
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Figure 38 Boggy Lake — Soluble Aluminium versus pH (note: log scale). The dashed line shows the ANZECC
guideline of 0.055 mg/L.

Aerial dosing of fine limestone at Currency Creek in 2009
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Comparison of drought period with the long-term water quality dataset

A summary of the water quality data for the drought and reference periods is shown in Table 12(a) and (b) for three
long-term monitoring sites in the Lower Lakes (Milang, Goolwa, Meningie). Time series of selected parameters (salinity,
turbidity, TN, TP) are shown in Figure 39 for a selected lake site (Milang). Also shown on Figure 38 is the closest
upstream monitoring site on the River Murray (Tailem Bend) which shows that, apart from minor increases in salinity, the
river water quality entering the Lower Lakes during the drought period has generally improved (lower nutrient and
turbidity levels).

There were large and significant (p<0.0001) increases in salinity/electrical conductivity at all Lower Lakes sites during the
drought period, with median levels 3 to 10 times that of the reference period levels. The highest increase was at Goolwa
where the median salinity of 1,801 uS/cm during the reference period rose to 17,080 pS/cm during the drought period.

Turbidity levels increased significantly in the Lower Lakes during the drought, with the exception of Goolwa. The increase
was particularly large in Lake Albert, where median turbidity levels at Meningie during the drought (89 NTU) were over
eight times those in the reference period (11 NTU).

No significant change in water temperature was found.

pH levels decreased slightly during the drought period at Goolwa, but there were no significant changes at Milang and
Meningie.

TN levels increased significantly (p<0.0001) at all sites in the Lower Lakes during the drought period with median levels
approximately double that of the reference period (Table 12). While apparent significant increases in NOXx levels were
observed during the drought period at Milang and Goolwa, the median values at all lake sites were very low (at or near
the detection limit of 0.005 mg/L). The very low levels of dissolved nitrogen and high TN levels in the lakes suggest that a
large amount of nitrogen is in organic form.

Similar to TN, TP increased significantly (p<0.0001) at all sites in the Lower Lakes during the drought period with median
levels just under double that of the reference period (Table 12). In the Lower Lakes, FRP levels did not significantly
change apart from at Goolwa, where concentrations were higher during the drought. At the other sites in the Lower Lakes
(Milang and Meningie) all median FRP values in the lakes during the drought and reference periods were estimated to be
below the detection limit (0.005 mg/L). In the Lower Lakes at Milang, all samples had TN:TP ratios above Redfield
stoichiometry indicating a phosphorus limited system during both drought and reference periods (Table 12).

Chlorophyll a levels increased significantly during the drought period in the main areas of the Lower Lakes, particularly at
Meningie where levels more than doubled. Goolwa did not show a significant change in chlorophyll a levels.

Power equation fits of water quality with mean lake depth (Figure 40) indicating that water level (and hence volume)
changes were a good predictor of water quality change for the Lower Lakes.

The drivers of these water quality changes are briefly discussed. See Mosley et al (2012) for more detailed analysis and
discussion.
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Table 12 Summary statistics (humber of samples, n; median; interquartile range, IQR) and p-values (for significant
differences based on Mann-Whitney U test) for (a) general water quality parameters and (b) nutrients and
Chlorophyll a between the extreme low flow (March 2007-November 2009) and preceding reference
(March 2003-November 2005) periods at Milang, Meningie, and Goolwa.

Exceedances of water quality guidelines for 95% ecosystem protection from ANZECC (2000) are shown in bold.
Where available, the guideline values used were specific ones provided for lakes in southcentral Australia.
The chlorophyll a data was assessed against the hyper-eutrophic guideline value.
(@)
Parameter Milang Goolwa Meningie
Low flow Ref. Low flow Ref. Low flow Ref.
Conductivity (uS/cm) n 97 31 44 31 67 30
Median 3,840 1,293 21,900 2,165 7,360 2008
IQR 2,820 125 11,058 1,392 5,170 284
p-value < 0.0001 < 0.0001 < 0.0001
TDS (mg/L) n 97 31 45 31 67 30
Median 2,112 711 12,045 1,191 4,048 1,104
IQR 1,551 69 6,082 766 2,844 156
p-value <0.0001 < 0.0001 < 0.0001
Water temperature (°C) n 101 9 41 10 26 10
Median 16.0 15.0 17.0 155 14.1 16.5
IQR 7.0 8.0 7.0 5.8 6.5 4.3
p-value NS NS NS
pH n 108 10 44 10 69 10
Median 8.5 8.6 8.4 8.6 8.5 8.5
IQR 0.3 0.3 0.3 0.3 0.2 0.1
p-value NS 0.0015 NS
Turbidity (NTU) n 28 31 25 31 69 30
Median 56 36 8 15 89 11
IQR 88 23 9 7 56 17
p-value 0.002 0.0002 < 0.0001
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(b)
Parameter Milang Goolwa Meningie
Low flow Ref. Low flow Ref. Low flow Ref.
TN (mg/L) n 29 31 29 31 66 30
Median 2.75 1.15 1.93 1.13 3.15 151
IQR 2.18 0.39 0.98 0.30 1.45 0.57
p-value < 0.0001 < 0.0001 < 0.0001
NO, (mg/L) n 29 31 29 31 66 30
Median 0.005 0.002 0.009 0.001 0.006 0.001
IQR 0.006 0.002 0.021 0.001 0.004 0.003
p-value < 0.0001 < 0.0001 NS
TP (mg/L) n 29 10 29 10 66 10
Median 0.154 0.088 0.104 0.061 0.188 0.107
IQR 0.157 0.028 0.095 0.062 0.068 0.046
p-value 0.0079 0.004 0.001
FRP (mg/L) n 26 31 29 31 60 30
Median 0.0025 0.0007 0.0036 0.0008 0.0047 0.0008
IQR 0.0040 0.0033 0.0051 0.0016 0.0024 0.0025
p-value NS 0.0089 NS
TN:TP ratio (molar units) n 26 10 29 10 63 10
Median 29.9 27.8 41.2 42.1 39.1 29.7
IQR 5.0 9.9 13.4 5.3 44.4 7.7
p-value NS NS 0.002
Chlorophyll a (ug/L) n 12 32 26 32 53 31
Median 34.9 25.0 28.2 25.0 63.5 31.0
IQR 8.3 10.4 35.6 7.0 44.8 21.4
p-value 0.0236 NS < 0.0001

NS = not significant at 5% level (p>0.05), n/a = data not available and/or statistical test not applied
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from 2003-10. See Mosley et al (2012) for more details.
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4 Discussion

The hydrological drought in the Lower Lakes from 2007 to late 2009 resulted in large water quality changes. These
changes resulted from complex shifts in hydrological and biogeochemical processes, and were only able to be elucidated
by intensive monitoring during the drought. The changing water quality dynamics before, during and after drought are
represented on the conceptual model shown in Figure 41. The key processes represented on this model are discussed
further below.

Pre—dingan it
EE ]

Figure41  Conceptual model of processes leading to changing water quality pre, during, and post hydrological
droughts in the Lower Lakes
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River inflows and quality

The drought period from 2007-09 was characterised by extremely low River Murray inflows to the Lower Lakes. As a
consequence water levels and volumes declined markedly in the Lower Lakes. This extreme hydrological outcome likely
resulted from very low basin rainfall in the preceding year (279 mm in 2006) and longer term reductions in autumn rainfall
in the basin, which is critical for preparing the catchment for runoff by replenishing soil moisture storages (Potter et al
2008, Timbal 2009). Recent evidence suggests the climatic and hydrological shifts occurring in the Murray—Darling Basin
are associated with changing patterns in Indian Ocean temperatures (Ummenhofer et al 2010). The decisions to
drawdown basin water storages in 2006 also hindered the ability of river managers to deliver regulated environmental
flows the following years. A quantitative analysis of changes in the loadings of water quality constituents from the river
into the Lower Lakes was not undertaken in this report. However, it is clear from the reduced river flow over Lock 1
(Figure 2) and reduced nutrient and turbidity concentrations (and only minor increase in salinity) at Tailem Bend (Figure
32) that loadings have reduced during the drought. This indicates that deteriorating water quality in the Lower Lakes
during the drought is not driven by deteriorating river water quality as also discussed in more detail in Mosley et al (2012).

Influence of lake hydrology on water quality

A complete lack of lake flushing occurred from 2007-09 as no discharge over the barrages to the Coorong and Murray
Mouth occurred. This resulted in a concentration of dissolved and particulate material in the lakes driven by evaporation
and the associated large reductions in lake volume. Salinity increases were very large, particularly in the southern
regions of the lake furthest from the river inflow and closest to the barrages, which leaked seawater into the lakes (due to
sea levels being higher than the lakes for much of drought period). As a consequence of these salinity increases, major
losses of freshwater species occurred (Nielsen 2003", EPA 2010, AWQC 2012) and the water became unsuitable for
irrigation (ANZECC 2000). Despite the dilutions during 2010, salinity levels still exceed guidelines for maintenance of
healthy freshwater ecosystems (Nielsen et al 2003). Lake Albert will take some time (years) to recover as being a
terminal lake system with a narrow and shallow entrance, it is difficult to flush.

Increases in the major ion concentrations during the drought were generally consistent with the changes in the water
balance (river and rainfall inflows — evaporation) as illustrated by linear relationships with chloride concentration. The
exception to this was for bicarbonate and to a less extent calcium. Modelling calculations (PHREEQC version 2, using
typical inorganic chemical composition) indicated saturation of the lake waters during the drought period with respect to
calcium carbonate (CaCOs;, calcite and aragonite) and hydroxyapatite (Cas(PO,4)sOH). This suggests these minerals may
be precipitating in the lake, resulting in a decoupling of calcium and bicarbonate from the behaviour of the other major
ions. The possible precipitation of hydroxyapatite could also help maintain low soluble phosphorus levels however the
kinetics of this reaction are slow and may be inhibited in natural waters (Inskeep and Silvertooth 1988) and algal uptake
of soluble P is likely to be more important. The influence of acidification events on major ion chemistry in localised areas
is discussed below.

The lack of lake flushing during the drought period also likely resulted in the observed very high concentration of nutrients
and algae. This effect has been observed in other temperature lake locations (Dillion 1975, Schindler et al 1996,
Schindler 1997). In the Lower Lakes, soluble nutrients remained very low during the drought, and the high TN:TP ratio
and dominance of cyanobacteria suggest that the lakes were phosphorus limited (Schindler et al 1998). Any soluble
nutrients that become available appear to be rapidly taken up by algae and the lakes were classed as hyper-eutrophic
under the ANZECC (2000) classification. It is uncertain whether any of the nutrient increases relate also to fertiliser
additions to the sediment margins as was conducted in the Lower Lakes revegetation program.

In most regions of the Lower Lakes during the drought the phytoplankton community has been dominated by
cyanobacteria (predominantly non-toxic Planktolyngbya, Aphanocapsa, Synechocystis species although a large toxic
Nodulariaspumigena bloom occurred in Lake Albert during the winter—spring of 2009). This cyanobacterial dominance in
the lakes is a distinct shift from the green algae (Planctonemalauterbornii) dominated phytoplankton community reported

1 Few freshwater species are predicted to remain above 8,000 uS/cm electrical conductivity (EC), and the diversity of

freshwater ecosystems decreases rapidly above 5,000 EC.
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by Geddes (1984) during a period of higher flow. Increased eutrophication leads to increased cyanobacteria biomass and
dominance in temperature lake systems (Pick and Lean 1987).

In general our results indicate there is increased cyanobacterial dominance in the Lower Lakes during hydrological
droughts. The exception to this general trend was the presence of high levels of green algae (Chlorella) over much of the
sampling period at Goolwa. The reasons for this are unclear but may relate to the increased salinity and marine
influences, and the associated low turbidity in the Goolwa Channel relative to other sites. The blue-green algal species
(Synechocystis and Synechococcus) that became more dominant during 2010 in the Goolwa Channel were known
salt-tolerant species and this differed from the blue-green algal species composition seen at other sites. Water
temperature did not increase during the drought so this does not appear to be a factor in driving increased productivity
during hydrological droughts in the Lower Lakes.

Dissolved organic carbon, and to a less clear extent colour, follow seasonal patterns with highest levels in summer and
lowest levels in winter. This is likely due to increased algal productivity and breakdown of particular organic matter in the
higher water temperatures of summer months. Dissolved oxygen is maintained near saturation throughout the Lower
Lakes which is likely due to rapid replenishment from the atmosphere via wind mixing (regularly turning over the entire
water column) on the shallow lakes. However depth profiling undertaken by Aldridge et al (2009) found some localised
low dissolved oxygen levels in deeper waters of the Goolwa channel.

Suspended sediment dynamics

Turbidity increased during the drought in the Lower Lakes, particularly in Lake Albert, which became very shallow (<1 m
deep on average) for much of the drought period. This increase is likely due in part to the dominance of the colloidal
fraction in the Murray system which stays in suspension (Douglas et al 1993) and can be concentrated during the lake
volume decline. Turbidity levels in the Lower Lakes during the drought have also been found to correlate with the depth of
the wave mixed layer as controlled by wind speed and fetch (Skinner 2010). As the lakes have become much shallower
during the drought, the wave mixed layer has been able to reach a much greater area of bottom sediment (Mosley et al
2012). This has likely increased the amount of sediment resuspension during the drought and led to the elevated turbidity
levels. In addition, finer clay sediments are predominantly found towards the middle of the lakes (Barnett 1993), so there
was likely more mobilisation of finer sediment materials as water levels declined.

Interestingly the ambient metal (Fe and Al) levels were well correlated with each other but not well correlated with
turbidity. This could suggest, at least at certain times, the turbidity is comprised of large amounts of organic material (eg
living or dead algal cells) and/or an additional source of Al and Fe (possible acid sulfate soil related) that is not directly
correlated to resuspended material. As noted earlier, increased algal productivity occurred during the drought despite
higher turbidities which would have reduced light penetration. The resuspension of chlorophyll in dead algal biomass
which has settled out of the water column may be giving a misleading impression of increased productivity. The lower
turbidity levels at Goolwa compared with the other sites are likely due to dilution from the seawater intrusion and salt-
induced flocculation of clay colloids (Mosley et al 2003). Further research during water level decline is required to
separate out the relative importance and dynamics of these sediment processes.

Acidification on lake margins

The very low water levels during the drought resulted in exposure of large areas of sediments containing acid sulfate
materials (Fitzpatrick et al 2008, 2010). The rewetting of these sediments via rainfall events or lake refill resulted in quite
substantial (3%) areas of the Lower Lakes turning acidic. Metals, most notably aluminium which is highly toxic to aquatic
organisms, major ions and nutrients were released at the same time. The Lower Lakes Acid Sulfate Soil Research
Program (DENR 2010) had predicted in advance acidification of marginal areas based on soil surveys (Fitzpatrick et al
2010), acid and metal mobilisation experiments (Simpson et al 2010, Sullivan et al 2010, Hicks et al 2010), and lake
geochemical modelling (Hipsey et al 2010). This information enabled targeted and effective monitoring and management
using limestone dosing in Currency Creek and Boggy Lake. The other acidified areas neutralised naturally following the
rapid refill of the lakes in 2010 and subsequent dilution and inflow of alkalinity. The sulfate:chloride ratio was a good
indicator of acid sulfate soil impacts. The reduction in this ratio, as occurred when Lake Albert was refilled, also indicated
sulfate reduction processes as these acidic soils were reinundated.
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The very acidic waters had low turbidity. This could indicate either dissolution of the clay minerals comprising the turbidity
and/or flocculation of the turbidity due to very high soluble aluminium and sulfate concentrations.

Following neutralisation, metal precipitates were observed in many areas due to hydrolysis and subsequent precipitation
of the dissolved metals. Acidic precipitates were also observed but were likely to be transient and persist only while low
pH conditions are present. The long-term fate of these metal precipitates is currently unclear but they are known to be
aquatic organisms (Stauber et al 2008). The overall ecological impacts of these acidification events are uncertain and
difficult to determine as they were preceded by drying and salinisation which caused their own severe impacts. The
sediment may remain toxic for some time after the water column is neutralised and further research is required to assess
risks to benthic organisms.

Management implications

Along with many other arid and semi-arid river systems, median river flows in the southern Murray—Darling basin are
predicted to decline further over the next 20 years (13% decrease by 2030) due to climate change (CSIRO 2008). Hence
extreme low flow periods will likely become more frequent and intense in these vulnerable systems. Careful water
resource planning and management will be required in arid systems to prevent water quality deteriorating to the point
where socio-economic and environmental values are threatened. The findings in this report strongly support that a
substantial increase in environmental flows to maintain system flushing, water levels and quality in the lower reaches of
the system during low flow conditions.
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5 Conclusion

The results of this monitoring study demonstrate that water quality in the Lower Lakes at the end of the Murray—Darling
Basin deteriorated substantially during the hydrological drought from 2007-09. There were dynamic and complex
interactions between hydrology and bio-geochemical processes leading to the observed water quality outcomes during
the drought. A marked shift to a more saline, turbid and eutrophic system occurred during the drought. These water
quality changes were attributed to a lack of flushing, which coupled with lake volume reductions, resulted in concentration
of dissolved and suspended material and increased wind-driven resuspension of sediments as the lakes became much
shallower.

Cyanobacterial species became more dominant with one large toxic bloom recorded. Rewetting of exposed acid sulfate
soils on the lake margins also resulted in severe surface water acidification and very high soluble metal levels in over
2,000 ha of surface water. The poorer water quality during the drought has had substantial negative impacts on the
aquatic ecosystems and associated socio-economic values in the region. Droughts and water security problems are
projected to intensify in the future in southern Australia. Improved basin-wide water management will be required to
prevent future water quality impacts similar to that which occurred in the Lower Lakes during the current drought.

Recommendations

e Further research and monitoring of acid fluxes from acidified sediments that are now submerged.

e Further assessment of water quality during future low flow events is recommended in Lower Lakes region, as well as
the time period for recovery from the recent event.

e Further research is undertaken on mechanisms of nutrient supply and demand in the Lower Lakes, including possible
phosphorus fluxes from suspended and benthic sediment and algal nutrient requirements, and influence of
zooplankton dynamics.

e Further research on dynamics of concentration and resuspension of sediment and algal material during low water
levels.

e Linkages of water quality and algal dynamics with zooplankton and higher trophic level dynamics.
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Appendix 1

Limestone treatment amounts (approximate) and

dates
Table A1 Boggy Lake Limestone treatment dates and amounts
Limestone treatment stage Date Tonnes of calcium carbonate Hectares treated
1 28 May, 1-3 June 2010 420 332
2 22 — 24 June 2010 400 341
3 29 — 30 August 2010 175 370
Total 995 1,043

Table A2 Timeline of 2009 limestone dosing program in Currency Creek and the Finniss River
Region Month Location Method Amount (approximate
tonnage)
Currency Stage 1
Creek
April -May | Upper Currency Creek Barriers 305
April -May | Currency Creek Hill Mounded barriers 251
Stage 2
May—July Lower Currency Creek Barriers 831
June-July [ South of Currency Creek Hill Barriers 230
June Middle of lower Currency Creek | Slurry dosing 43
June Upper Currency Creek Dry aerial dosing 120
June Lower Currency Creek Dry aerial dosing 271
July Lower Currency Creek Dry aerial dosing 600
July Lower Currency Creek Slurry aerial dosing | 9
Subtotal 2,660
Finniss River | Stage 1
April Upper Finniss River Mounded barriers 312
Subtotal 312
Combined Total 2,972
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